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Abstract

A method to segment a floor and an obstacle region
from images, is a fundamental function for robots in
real-world. This paper describes a floor detection method
by integrating binocular stereo vision and whole body in-
formation, for walking direction control of a humanoid
robot.

We developed the humanoid robot navigation system
using vision based local floor map. The developed sys-
tem consists of a map building stage and a walking di-
rection control stage. In the map building stage, the sys-
tem builds a local floor map around a robot by integrating
floor region information from visual input and whole body
posture information. Plane Segment Finder (PSF) algo-
rithm, which is able to extract planner surface from 3D
vision input, is utilized to segment a floor and an obsta-
cle regions. Floor region segmentation from input images
is represented in view coordinates, then whole body pos-
ture information is utilized to transform from view co-
ordinates to body coordinate to build a local floor map.
In another stage, the system search for open space direc-
tion on the local floor map and control walking direction
toward open space to avoid obstacles.

Finally, walking navigation experiments based on floor
detection using a life-size humanoid robot are shown.

1. Introduction

Recently many humanoid robots have been devel-
oped, specially in the research field of dynamic walking
control[1, 2, 3, 4, 5]. However these humanoid robots is
not able to autonomously walking based on environment
recognition. To realize a humanoid robot in real-world
and unknown environment, a sensor based navigation
function is required.

The three dimensional recognition of environments
is important for a robot that behaves in a real world.
Recently many remarkable real-time depth map gener-

ation systems are developed and some of them are sold
commercially[6, 7, 8, 9].

Although the development of these real-time depth
map generation systems are a remarkable achievement
toward understanding real environments, there are few
robots which utilize depth map information[10, 11].

In this paper we preset a method to segment floor re-
gion and obstacle region by integrating binocular stereo
vision and whole body information, for walking direction
control of a humanoid robot.

We developed the humanoid robot navigation system
using vision based local floor map. The developed system
consists of a map building stage and a walking navigation
stage. In the map building stage, the system builds a lo-
cal floor map around a robot by integrating floor region
information from visual input and whole body posture
information. In order to segment floor and obstacle re-
gions, Plane Segment Finder (PSF) algorithm is utilized,
which is able to extract planner surface from 3D vision
input.

In this paper, we describes an algorithm of PSF for
extract planner surface detection from input images that
includes 1) Planner surface segment candidate extraction
using 3D Hough Transformation from depth map infor-
mation, 2) fitting the planner surface segment candidates
to the depth map images to detect the partial planner
surface region, since the extracted planner surface seg-
ment candidates are general planes, with no boundary.
To achieve real-time Plane Segment Finder system, we
apply 1) Recursive correlation method for depth map
generation, 2) Partial planner surface segment extraction
by using Randomized Hough Transformation method for
PSF.

In the another stage, the system search for open space
direction on the local floor map and control walking di-
rection toward open space to avoid obstacles.

Finally, walking navigation experiments based on floor
detection using a life-size humanoid robot are shown.
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Figure 1. Hough Transform of 2D line vs. Hough
Transform of a planner surface

2. Plane Segment Finder(PSF)

In order to segment floor region and obstacle re-
gion from binocular stereo vision inputs, we utilize 3D
Hough Transformation based 3D planner surface de-
tection method, which we call Plane Segment Finder
(PSF)[12].

In previous research of computer vision area, many re-
searchers have been investigating Range Image Segmen-
tation method which is to label input distance image into
planner surface patches with Region growingmethod[13],
Split-and-merge method[14],Clustering method[15, 16],
Scan line structure method[17], and so on.

These computer vision researches utilized laser range
finder which is able to precise distance information, how-
ever these system usually too large to embedded in a mo-
bile robot. Planner surface detection system for robot
application requires small equipment, such as binocular
vision system. However distance information from stereo
vision system is less precise. Therefore, a planner surface
detection method that is robust against noise is required.
Thus, Hough Transformation method[18, 19] which is a
well-known method which is robust to noise and occlu-
sions, is utilized.

The algorithm of PSF is as follows. 1) Planner surface
segment candidate extraction using 3D Hough Trans-
formation from depth map information. Since, the ex-
tracted planner surface segment candidates are general
planes with no boundary, 2) fitting the planner surface
segment candidates to the depth map images to detect
the partial planner surface region is applied.

Figure 2. Parametric representation of a plan-
ner surface

2.1. Binocular Stereo Vision based Planner Surface
Extraction using 3D Hough Transformation

We utilized the Hough transform method for extract-
ing planner surface segment candidates. The Hough
Transformation method is a well-known method which
is robust to noise and occlusions, and generally used for
extracting lines, circles or ellipses.

Figure 1 shows difference between Hough Transform
of a 2D line and Hough Transform of 3D planner sur-
face. For a straight 2D line segment extraction using
the Hough Transform method, one point on a 2D line
is transformed to a curved line in a Hough space (pa-
rameter space). In the case of our Hough transform for
extracting planner surface extraction, a point on a 3D
plane is transformed to a curved surface.

To apply the Hough Transform method for a plan-
ner surface extraction, we adopt the following parametric
representation of a plane. Figure 2 shows this represen-
tation, where ρ is the distance between a plane and the
origin, φ is angle against the x axis, θ is angle against y
the axis. (x0, y0, z0) is the point on the plane.

ρ = (x0 cos(φ) + y0 sin(φ)) cos(θ) + z0 sin(θ)

This equation has the following features.

1. A point in 3D space becomes a curved surface in a
Hough space.

2. A plane in 3D space becomes a point in a Hough
space.

Hence, to extract plane segment candidates, 1) we
transform (“vote”) all 3D points into the Hough space,
2)Detect peak points in the Hough space, which corre-
spond to planner surface candidates in 3D space.

2.2. Planner Surface Region Detection by Fitting to
Depth-map Image

The planner surface segment candidates which are
extracted from distance information using the Hough



Table 1. Accuracy of plane segments detection

ρ [cm] θ [degree] φ [degree]

Plane 1 10.11 98.8 56.3
Plane 2 12.32 98.8 56.3
Plane 3 14.95 98.8 56.3

ρ is distance between a plane and the origin.
φ is angle against x axis.
θ is angle against y axis.

Table 2. Calculation time of each functions on
PentiumIII-750MHz (Dual CPU machine))

Function Time
LoG filter ∗1 5.92
Shift and rotate a input image 10.14
Disparity image generation ∗2 36.04
Distance Information Calculation 5.49
Smooth Distance Information ∗3 33.87
Plane Candidate Extraction ∗4 141.28
Plane Segment Detection 0.34
Total time of processing 233.08

(unit:msec): The size of images are 128×128 pixel.

*1 7x7 filter for 2 images.
*2 search area is 0 to 24.
*3 5x5 average filter.
*4 parameter space is 60×72×72 for ρ, θ, φ.

Transform, are general plane, i.e. there is no bound-
ary. Thus a method to detect partial plane segments
from plane segment candidates is required. We utilize
the following simple method.

For each plane segment candidate:

1. Generate the virtual depth map image of the ex-
tracted plane segment candidate using parameters
of the plane.

2. Calculate distance between the virtual depth map
image and the real depth map image (the input dis-
parity image) at each pixel.

3. If the distance is lower than the threshold, this point
categorized to the partial plane segment.

3. Design and Development of Real-Time
Plane Segment Finder System

For robotics applications, real-time and robustness are
important features. We developed PC-based real-time
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Figure 3. A) Input image. B) Depth map
(Brighter is closer). C) Result of plane segment
detection.

Plane Segment Finder system. The advantage of using
PC as a vision system is 1) Current CPU is as fast as
hardware system due to high frequency clock cycle and
SIMD-based multimedia instruction set suit visual pro-
cessing. 2) Software approach enables us to implement
complex algorithms such as reliability evaluation.

Our system consists of two parts, one is depth map
generation system [22]and the other is plane segment de-
tection system.

3.1. Real-Time and Reliable Depth Map Generation
Sub-System

To achieve the real-time depth map generation sys-
tem, we utilized following three key issues. (1)Recur-
sive Correlation Method[23, 7] , (2) Algorithmic Opti-
mization for 2nd Level Cache, (3)Multimedia instruction
set(MMX) implementation.

The Recursive Correlation Method reduces the com-
putation time of finding corresponding points between
two images from O(N2W 2D) to O(N2D), where N is
the input image size, W is the window size of correlation
and D is the max disparity size.

We apply the “Consistency Checking Method” [24, 25]
to generate the reliable depth map. Since stereo match-
ing suffers from occlusions or mismatches fundamentally.

3.2. Randomized Hough Transform for Real-Time
Plane Segment Finder

The Hough Transform method has the advantage that
it is robust to noise. However, the computational cost
and required memory size are very high.

These disadvantages are very significant problems to
develop real-time system for robotics applications. To
cope with this problem, a method called Randomized or
Probabilistic Hough Transform[20, 21] has been intro-
duced. We apply this idea to our Hough Transformation
for extracting planes.

In the original Hough Transform method, each point
on the input image is transformed to a curved surface,
therefore we need to vote for Θ−Φ points in Hough array
for each point in the distance image.
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Figure 4. Randomized Hough Transform

By introducing Randomized Hough Transform
method, we need to vote for S points in Hough array
for each point in the distance image(S is constant).

This method reduces the computational cost of Hough
Transform. The points to be voted in Hough array for
a pixel in distance image is S(constraint) points, where
Θ − Φ(resolutionofeachaxis) points without Random-
ized Hough Transform method.

3.3. Evaluation of Plane Segment Finder System

We placed blocks on a desk. Figure 3(A) is the input
image, and the depth image is shown in Figure 3(B).
Then, we detected plane segments from the depth image
using PSF, Figure 3(C) shows the results of PSF. Pixels
which have the same gray level are pixels on the same
plane segment. These results show there are three planes
in the input image.

Figure 3(D) is three-dimensional representation of the
result of PSF. Each detected plane segment is rendered
with a texture-map. The images shows the same 3D data
from different view points, and the arrows in the images
are x − y − z axis(5[cm]).

Table 1 shows the accuracy of the detected plane seg-
ments for each 3 blocks. From the results, we can see that
the distances between each plane are 2.21[cm], 2.62[cm]
respectively, where the real height of block is 2.5[cm].

Table 2 shows the calculation time of the developed
system. The system is able to detect planes at a rate of
up to 4[Hz]. The size of input image is 128x128 pixels,
and window size of correlation is 21, disparity size is 32.
The size of Hough space is 100 for ρ and 72 for θ, φ.
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Figure 5. (1) Depth map (2) Result of floor
recognition (3) Generated local map and open
space search

4. Local Floor Map Building by Integrat-
ing PSF Results and Whole Body Pos-
ture Information

Though local floor map is required for walking naviga-
tion of the robot, the floor region segmentation results of
PSF is represented in view coordinates, then the whole
body posture information is used to perform the trans-
formation from view coordinates to body coordinate to
build a local floor map.

Figure 5 shows the results of floor region segmentation
of PSF and local floor map by integrating the results of
PSF and whole body posture information.

Figure 5(1) is the depth map image, (2) is the result of
map building by integrating detected floor region infor-
mation, which is represented in view coordinates. Figure
5(3) shows the local floor map, which is represented in
body coordinates of the robot. Each pixel of this map
has a binary information whether floor region or non-
floor region, which includes both obstacle regions and
regions out of the field of view.

5. Walking Navigation Experiments of
Humanoid ’H7’ using Vision-based Lo-
cal Floor Map

Walking navigation experiments based on floor detec-
tion by integrating binocular stereo vision based Plane



Segment Finder and whole body information with the
life-size humanoid robot H7[26] ware carried out[27].

The robot control it’s walking direction based on the
result of open space search on the 2D local floor map
as shown in previous section and Figure 5(3). The open
space search method examines which direction an obsta-
cle exists between -15 to +15 [degree] every +5 [degree].
Black lines in the image show each direction of the open
space search. Figure 6 show a result local floor map
based walking direction control.

6. Conclusion

This paper describes walking direction control sys-
tem of a humanoid robot with map building based on
integration of vision based floor region recognition and
whole body information, and open space direction search
method.

The system builds a local floor map around a robot
by integrating floor region information from visual input
and whole body posture information. Plane Segment
Finder (PSF) algorithm is utilized to segment floor and
obstacle regions. To control walking direction to avoid
obstacles, the system search for open space direction on
the local floor map.

Finally, walking navigation experiments based on floor
detection using a life-size humanoid robot are shown.
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