
Choreonoid as a Software Framework for Implementing
Graphical Robotics Applications

*Shin’ichiro Nakaoka (AIST)

1. Introduction

Choreonoid1 is a graphical software tool which was

originally developed for the purpose of choreographing

motions of humanoid robots[1]. Fig.1 shows a screen-

shot of it. Choreonoid allows a user to create dynam-

ically stable whole body motions of biped humanoid

robots with operations like key frame editing of CG

character animations [2]. In addition to that, the base

part of Choreonoid is designed to be a general frame-

work for integrating various algorithms or functions

into a powerful graphical user interface. This fea-

ture can make Choreonoid more useful robotics soft-

ware tool. This presentation introduces this aspect

of Choreonoid. We call it ”Choreonoid framework”

when we distinguish it from the whole Choreonoid

package including the choreography interface.

2. Design Goals

Key points of our design goals of the Choreonoid

framework are as follows:

1. To cover a high-level, rich GUI framework

2. To allow a developed application to make full use

of PC’s functions and performances not only for

internal computations but also for their visual-

izations and interactions with user operations

3. To provide a lot of flexibility in implementing and

extending functions on the framework

4. To be available for many people

There are many libraries and frameworks which are

popularly used in many robotics programs, but few of

them sufficiently cover the GUI part. An important

role of our framework is to complement this area of

robotics software tools.

The second point would not necessarily be impor-

tant for every applications, but it is necessary for our

original purpose of implementing choreography inter-

face. It has to render complex 3D robot models and do
a heavy computation of the dynamic balance adjust-

ment while directly interacting with user operations.

The quality of such an interface highly depends on

the second point, and there will be other robotics ap-

plications which require it.

The third point is also important to robotics appli-

cations which consist of a lot of modules cooperating

with each other. High-level robotics tasks often re-

quire such systems and the framework should be able

1The name ”Choreonoid” is a combination of ”choreograph”
and ”humanoid,” and expresses the original motivation to de-
velop this tool.

to handle them.

For the fourth point, depending on special sys-

tems or expensive systems should be avoided, and the

portability of the whole system should be increased.

3. Basic Design of the Framework

To achieve the goals described above, we designed

the Choreonoid framework as follows.

3·1 Languages and Processes

To achieve the second point in the design goals,

the framework employs C++ as a main programming

language, and all modules built on the framework

are basically executed in a single runtime process of

the operating system. This kind of implementation

is not special at all, but separating a system into

back-end processes and front-end processes and ap-

plying the different languages to them is also popu-
lar in robotics systems. For example, robot simulator

OpenHRP[3] consists of back-end CORBA servers im-

plemented with C++ or Java and a front-end GUI

implemented with JAVA. In contrast to such a sys-

tem, our framework intends to be a more monolithic,

straightforward system with minimum overheads so

that it can be more reasonable for implementing ap-

plications like our choreography interface.

In fact scripting languages are useful for implement-

ing a part where the maximum hardware performance

is not required. In order to achieve this, the frame-

work embeds the Python interpreter and provides

Python wrappings for major objects in the framework.

This function is still under development, but we think

it will be an important function of the framework.

3·2 MVC-like Signal-based Processing

One of the important factors to achieve the third

point in the design goals is an object processing style

like so-called ”Model-View-Controller(MVC)”.

The key technique to achieve this processing style
is ”Signal”, which flexibly connects various actions

of objects. Objects in the framework can have ar-

bitrary set of signal members and each signal can

have multiple connections to any actions (functions)

of any objects. A particular state change or event

emits its corresponding signal and the emission of the

signal causes its connected actions. This technique

can achieve ”Observer Pattern” in a flexible manner.

In this style, objects dealing with internal model

can be independent from their visualizations or user

input handling, and the objects can concentrate on

their own work. Similarly, objects dealing with the

RSJ2011AC2Q1-2

第29回日本ロボット学会学術講演会（2011年9月7日〜9日）



Fig.1 A screenshot of Choreonoid

visualization can concentrate on their own work. All

they have to do is updating the visualization when

related signals are emitted. Objects dealing with user

inputs just control model objects and they do not have

to consider other objects which handles the visualiza-

tion or user inputs. This mechanism allows object to

cooperate with other related objects while keeping the

independence in implementation. This plays an im-

portant role in achieving the third point in the design

goals.

3·3 Tree Structure Managing Various Model
Objects

In the Choreonoid framework, model objects explic-

itly handled by a user is called ”Items”, and items are

managed in a tree structure which is explicitly shown

on the GUI component called ”ItemTreeView”. In
the item tree, various types of items are simultane-

ously managed and item positions including parent-

child relationships can be freely set by a user. The

relationships are not only a visual factor but also a

factor to determine relationships in actual processing

of the items. This design can make the management of

items simple and flexible. Additional functions which

handle new combinations of item types can be easily

implemented and integrated on the framework. This

tree-based management is also an important factor for

the third point of design goals.

3·4 View System

The Choreonoid framework provides the view sys-

tem, which integrates a lot of GUI window panels into

a single main window. Each window panel is called

a ”View”, and views are placed on the main win-

dow with tiled separations and tabbed overlaps. The

placement can be freely modified to be appropriate

for operations of the moment. This kind of window

management is similar to that of integrated develop-

ment environments (IDE) such as Visual Studio and

Eclipse. With this system, a lot of GUI components

can be easily managed by a user and a developer can

concentrate on implementing each GUI component.

3·5 Plugin System

In this framework, a set of additional functions are
implemented as a plugin module. A plugin can use

not only functions provided by the framework but

also functions provided by other plugins. In addi-

tion, a function of a plugin can be implemented so

that it can be later extended by other plugins. These

are achieved by handling plugins just as usual shared

libraries (DLLs) for other plugins. The drawback of

this manner is that version up of a plugin can eas-

ily cause a situation where other plugins depending

on it must be recompiled, because public ABIs eas-

ily change in C++ unless developers are very careful

about them. Choreonoid however employs this man-

ner in order to obtain the highest flexibility of the

plugin system.

3·6 Libraries Used in the Framework

The framework is built on the following libraries:

Qt A cross-platform GUI framework library. It sup-

ports popular operating systems including Win-

dows, Linux and Mac OS X. The GUI system of

the Choreonoid framework is based on Qt and

higher-level functions are added on it. Qt also
provides non-GUI functions such as thread man-

agement, and some of them are also used in the

Choreonoid framework to increase the portabil-

ity.

OpenSceneGraph A library for rendering 3D

scenes with high-level scene graph processing. It

RSJ2011AC2Q1-2

第29回日本ロボット学会学術講演会（2011年9月7日〜9日）



is built on the standard OpenGL API and works

on any operating systems providing OpenGL.

This library is used in the 3D scene rendering

system of the Choreonoid framework.

Eigen A vector / matrix library. This library has

a lot of advantages over other vector / matrix

libraries. Most of vector /matrix computations

in the Choreonoid framework are done using this

library.

Boost C++ libraries Collection of many useful

C++ libraries which compliment the standard
C++ library. Bind, Function, Signals and Smart

Ptr of Boost libraries play an important role in

the framework design, and many other Boost li-

braries are also used in the framework.

All these libraries are open-source ones and each li-

cense allows users to control the license of their own

programs using (linking) the library. All these li-
braries are also portable. This helps the framework to

work on both Linux and Windows, and we are plan-

ning to support Mac OS X, too. The libraries greatly

contribute to achieve our goals of the framework de-

sign.

4. Application Examples
4·1 Actual Robot Playback System

The HRP humanoid robots (HRP-2, HRP-3, HRP-

4C, etc.) have a modularized control system called

”Hrpsys”[4], which can be remotely controlled with

CORBA or RTM[5] communications. To control ac-

tual robots from Choreonoid, we developed ”Hrpsys-

Plugin”, which is a Choreonoid plugin which processes

remote commands of Hrpsys. Using this plugin, mo-

tion data managed on Choreonoid can be easily exe-

cuted on an actual robot just by operating the motion

playback on Choreonoid [6]. In this way, extending ex-

isting functions to cooperate with other systems can

be achieved by writing a plugin.

4·2 Humanoid Choreography System

As described in section 1, we originally began to

develop Choreonoid to realize the interface for chore-

ographing whole body motions of biped humanoid

robots. Now the key part of the choreography system
is implemented as a plugin called ”ChoreographyPlu-

gin”. Thus the choreography system can be consid-

ered as one of applications built on the Choreonoid

framework.

The main functions added by ChoreographyPlugin

are key pose interpolation with dynamic balance ad-

justment and a view for editing key pose sequences

(PoseRollView). The framework in itself provides the

functions for editing poses of a robot model with a rich

set of graphical user interfaces. PoseRollView cooper-

ates with those functions so that a user can efficiently

create a sequence of various key poses. Every time key

Fig.2 Dance demonstration performed by biped hu-
manoid robot HRP-4C [7]. The motion of the
robot was created using Choreonoid.

poses are added, modified or removed, the interpola-

tion system immediately adjusts the key poses and

their interpolated motions so that the resulting mo-

tion can be kinematically and dynamically stable[2].

Cooperating with HrpsysPlugin, created motions can

be directly executed on the actual robot with the syn-

chronization with the motion of the virtual robot on
Choreonoid.

This system will enable humanoid robots to be

used as a kind of ”digital content technology” like

CG characters. Toward this goal, we are making

an attempt to produce attractive humanoid contents

in cooperation with professional creators [7]. Fig.2

shows one of those contents created with Choreonoid.

In this demonstration, biped humanoid robot HRP-

4C[8] sings and dances with human back dancers. The

whole body motion data of the robot was created us-

ing Choreonoid with ChoreographyPlugin, and the
created demonstration was highly evaluated in the

world. This means the Choreonoid framework has

an potential to build practical, full-fledged robotics

applications.

5. Future Work

First of all, we will release Choreonoid to the pub-
lic with an open-source license. Then we will con-

tinue to improve Choreonoid to be widely used soft-

ware framework for implementing graphical robotics

applications.

6. Acknowledgments

A part of this work is funded by NEDO Intelligent

RT Software Project.

References

[1] “AIST press release: Development of integrated
software to generate humanoid robot motion eas-
ily” (2010). http://www.aist.go.jp/aist_e/latest_
research/2010/20101105/20101105.html.

[2] S. Nakaoka, S. Kajita and K. Yokoi: “Intuitive and
flexible user interface for creating whole body mo-
tions of biped humanoid robots”, Proceedings of the
2010 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, Taipei, Taiwan, pp. 1675–
1682 (2010).

RSJ2011AC2Q1-2

第29回日本ロボット学会学術講演会（2011年9月7日〜9日）



[3] F. Kanehiro, H. Hirukawa and S. Kajita: “OpenHRP:
Open architecture humanoid robotics platform”, In-
ternational Journal of Robotics Research, 23, 2, pp.
155–165 (2004).

[4] F. Kanehiro, K. Fujiwara, K. Harada, K. Kaneko,
S. Kajita, K. Yokoi and H. Hirukawa: “Motion control
system of HRP-2 -plugins and their execution control
(in Japanese)”, Proceedings of 21th Annual Conference
of the Rbotics Society of Japan, Japan (2003).

[5] N. Ando, S. Kurihara, G. Biggs, T. Sakamoto and
H. Nakamoto: “Software deployment infrastructure for
component based RT-systems”, Journal of Robotics
and Mechatronics, 23, 3, pp. 350–359 (2011).

[6] S. Nakaoka, F. Kanehiro, K. Miura, M. Morisawa,
K. Fujiwara, K. Kaneko, S. Kajita and H. Hirukawa:
“Creating facial motions of Cybernetic Human HRP-
4C”, Proceedings of the 10th IEEE-RAS International
Conference on Humanoid Robots, Paris, France, pp.
561–567 (2009).

[7] S. Nakaoka, K. Miura, M. Morisawa, F. Kanehiro,
K. Kaneko, S. Kajita and K. Yokoi: “Toward the use of
humanoid robots as assemblies of content technologies -
realization of a biped humanoid robot allowing content
creators to produce various expressions -”, Synthesiol-
ogy, 4, 2, pp. 80–91 (2011).

[8] K. Kaneko, F. Kanehiro, M. Morisawa, K. Miura,
S. Nakaoka and S. Kajita: “Cybernetic Human HRP-
4C”, IEEE-RAS International Conference on Hu-
manoid Robots, Paris, France (2009).

RSJ2011AC2Q1-2

第29回日本ロボット学会学術講演会（2011年9月7日〜9日）


