
Manipulation Planning for the JSK Kitchen Assistant Robot Using

OpenRAVE

Rosen Diankov (University of Tokyo), Kenji Sato (University of Tokyo), Hiroaki Yaguchi
(University of Tokyo), Kei Okada (University of Tokyo), Masayuki Inaba (University of

Tokyo)

1. Abstract

Using the OpenRAVE motion planning system, we

show the minimal number of steps to get the JSK

Kitchen Assistant Robot to autonomously pick-up

cups and dishes from the sink and place them in a

dishwasher (Figure 2). Starting from just the basic

CAD and kinematics models of the robot and target

objects, it took a total of 9 hours of development

with OpenRAVE to achieve the final autonomous

pick-and-place system. We originally developed this

demo as a case study of how quick a planning system

tailored for a specific task can be created with Open-

RAVE. In this paper, we describe the entire 9-hour

process we went through with OpenRAVE to achieve

this demo.

2. What is OpenRAVE?

OpenRAVE is an environment for testing, devel-

oping, and deploying motion planning algorithms in
real-world robotics applications (Appendix, [1]). It

has many functions for analyzing the geometric struc-

ture of robotics scenarios and applying them to mov-

ing robots throughout the workspace. OpenRAVE

does two things really well:

• For each robot, use IKFast to generate an in-

verse kinematics program specifically tailored for

that robot’s structure. This allows all singular-

ity configurations and divide by zero conditions
to be handled for. Most of the generated solvers

run in 5 µs.

• Can easily combine multiple constraints like

avoiding collisions, grasping objects, maintain

sensor visibility, to connect a robot’s initial and

goal configurations together.

OpenRAVE works in three stages (Figure 1) where

it pre-computes a database of all static information

used to solve the problem. This information is usu-
ally the target object and robot CAD models. Al-

though the database generation times can take any-

where from a couple of minutes to a couple of days,

they reduce the number of parameters the user has

to deal with when planning in the real environment.

Figure 3 shows a more detailed peek inside pick-and-

Fig.1 OpenRAVE works in a 3-stage system.

Fig.2 A 6DOF robot picks objects from the sink and
places them in a dishwasher.

place planning system. All the robots and obstacles

are stored in COLLADA format [2] using extra robot

specifications [3]. Each robot has a list of manipu-

lators that hold the chains within the robot hierar-

chy that inverse kinematics can be applied to. In the

database generation step, stable grasp are generated

and the analytic equations to inverse kinematics are

solved. Finally the pick-and-place problem requires

two samplers to be created:

• a sampler to find a robot configuration where the

hand is grasping the target object,

• and a sampler to find a valid destination of the

target object while the robot is grasping it.

The manipulation planning phase then samples

from both the current and goal samplers and attempts

to connect them in the robot configuration space while

avoiding collisions.

3. Robot Preparation

Once the robot geometry and joints are defined, we

need to attach manipulator meta-data that:

RSJ2011AC2Q2-2

第29回日本ロボット学会学術講演会（2011年9月7日〜9日）



Fig.3 The OpenRAVE pick-and-place planning sys-
tem is composed of Given Information, Com-
puted Information, and Environment Informa-
tion.

• Defines the base and end effector links. Kine-

matic structure analysis allows the chain to be

extracted from that,
• Defines the hand joints,

• Defines the closing direction for each of the joints,

• Defines the coordinate system of the manipula-

tor.

• and defines the inverse kinematics types that are

applicable/interesting to the robot.

Figure 4 shows the robot manipulator coordinate

frame and the scene we’ll be using to plan in. The

Kitchen Assistant Robot (KAR) has 6 rotation joints

and 1 slider joints that allows it to slide across the

kitchen.

4. Database Generation

OpenRAVE IKFast is used to analyze the robot

kinematics, solve the inverse kinematics equations,
and write their solution to a C++ file. The C++

file is compiled into a dynamically loadable object

and called during planning. In OpenRAVE, the

databases.inversekinematics module is responsi-

ble for this management

Fig.4 The kitchen scene with a 7DOF robot that can
slide across the kitchen on a rail. The robot has
an arm manipulator defined with an grasping
approach direction normal to its palm.

Fig.5 Given a 6D hand position, the IK solvers
generated from IKFast allow the entire solution
space to be explored.

openrave.py --database inversekinematics

--robot=myrobot.dae --manipname=arm --iktests=100

--iktype=transform6d --freejoint=base_joint

The IK type can be one of Transform6D, Ro-

tation3D, Translation3D, Direction3D, Ray4D,

Lookat3D, TranslationDirection5D, Transla-

tionXY2D, and TranslationLocalGlobal6D. Because

Transform6D only needs 6 joints to compute the IK,

one joint has to be freed from the IK computation

using –freejoint. Figure 5 shows 3 IK solutions given

the same hand position.

OpenRAVE generates grasps by sampling rays on

the target object’s surface and manipulator’s surface.
The actual grasper module aligns the two rays, sets

the hand to an intitial preshape and moves the grip-

per and the its joints until they hit the target. Once

the gripper cannot close any further, all the contact

points are extracted and the force closure criteria is

computed; this guarantees that the gripper will be

able to absorb any force the target object experiences.

In OpenRAVE, the databases.grasping module is

responsible for this management:

RSJ2011AC2Q2-2

第29回日本ロボット学会学術講演会（2011年9月7日〜9日）



Fig.6 Possible grasps for a cup and dish. These
grasps are stored in a set, which is then searched
for when looking for a feasible grasp in the envi-
ronment.

Fig.7 Robot configurations of stable grasps.

openrave.py --database grasping

--robot=myrobot.dae --manipname=arm

--target=myobject.dae --friction=0.1

--preshape="-0.685 -1.48 0 0 0"

--manipulatordirection="0.09 0.8 0.58"

--graspingnoise=0.01

The command line interface takes the robot, its ma-

nipulator, the target object and a set of grasp parame-

ters. –graspingnoise is the most important parameter

since it prunes out fragile grasps that might be prone
to slipping the target object; its value represents the

amount of positional noise of the target pose the grasp

should be robust to. The final grasps can be viewed

with the –show command (Figure 6).

5. Scene Verification

Once all the databases are completed, we create a

sample scene and test if the robot can grasp the ob-

jects from nominal positions (Figure 7). The Grasp-

ingModel.computeValidGrasps function selects

grasps valid in the environment by checking collision

detection, inverse kinematics, if the fingers would hit

any other object when closing, if the robot can start

approaching from at least a couple of centimeters

away. Note that the same grasp can be achievable

by many different robot configurations.

We then need to model the entire space of object

goal placements such that they will be safely placed

inside the dishwasher without falling out. We do this

Fig.8 Robot configurations of feasible destinations of
each object.

by sampling random 6D poses of each object on top

of the dishwasher try and use a physics engine to drop

the object down. Once dropped, we wait until every-
thing settles before deciding if that was a good place

to drop the object at. Once the object destination is

chosen, we check if the robot can be moved to there

using a grasp from the grasp set. Figure 8 shows the

goal positions of three different scenes. Notice that

sometimes the cup can be placed on top of the plate

if the flat region of the plate is big enough.

6. Manipulation Planning

The final phase combines the grasp and goal sam-

plers to sample configurations of the robot that can

simultaneously pick up an object and place it in the

dish washer. The BiRRT planner [4] is first started

with one goal configuration sampled. Then as the
planner runs, we call the goal configuration sampler

in parallel and continue seeding the planner with more

goals. Because each grasp is defined as a 6D pose, a

Transform6D IK is the easiest to work with. The ex-

amples.graspplanning is a demo that comes with

OpenRAVE and shows how to use this machinery.

The main functions are in the TaskManipulation

interface, and the following example shows how to use

it:

openrave.py --example graspplanning

Figure 2 shows one run of the kitchen robot.

RSJ2011AC2Q2-2

第29回日本ロボット学会学術講演会（2011年9月7日〜9日）



Fig.9 OpenRAVE supports manipulation planning
with robots with only 5 joints.

Unfortunately, robots with only 5 joints cannot

have Transform6D IK, so most researchers give up

or attempt to parameterize the grasps so that the full

6D pose is not needed. However, OpenRAVE sup-
ports using the TranslationDirection5D IK type to do

grasp planning with robots with 5 joints (Figure 9).

In OpenRAVE, run the following command to see the

demo in live action:

openrave.py --example graspplanning

--scene=data/katanatable.env.xml

Note that we do not consider regrasping in this

demo, but it would be possible to plan with regrasping

by adding an intermediate 6D position of the target

object.

7. Conclusion

In the paper we showed all the steps necessary to

do pick-and-place tasks with OpenRAVE. The entire

demo shown in OpenRAVE was done in 9 hours start-

ing from just the basic robot and target object CAD

models. The most time consuming part was generat-

ing the grasp set, since over 50,000 grasp candidates

had to be tested. However, new OpenRAVE versions
allow the grasp computation to be parallelized over a

cluster of computers using ROS [5].

OpenRAVE is a huge system and there is a lot of

unexplored functions that can help in modeling tasks

and injecting planning and search-based components

into them.

References

[1] R. Diankov, “Automated construction of
robotic manipulation programs,” Ph.D. disser-
tation, Carnegie Mellon University, Robotics
Institute, August 2010. [Online]. Available:
http://www.programmingvision.com/rosen diankov thesis.pdf

[2] R. Arnaud and M. C. Barnes, COLLADA: Sailing the
Gulf of 3D Digital Content Creation. AK Peters, Ltd,
2006.

[3] Rosen Diankov and Ryohei Ueda, “Robot-specific
COLLADA Extension Proposal.” [Online]. Available:
http://openrave.programmingvision.com/wiki/index.php/Format:XML

[4] J. Kuffner and S. LaValle, “RRT-Connect: An Ef-
ficient Approach to Single-Query Path Planning,” in
Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2000.

[5] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote,
J. Leibs, E. Berger, R. Wheeler, and A. Ng, “(ros): an
open-source robot operating system,” in ICRA Work-
shop on Open Source Software in Robotics, 2009.

RSJ2011AC2Q2-2

第29回日本ロボット学会学術講演会（2011年9月7日〜9日）


