
DevelopingDevelopingDevelopingDeveloping OpenOpenOpenOpen SourceSourceSourceSource SoftwareSoftwareSoftwareSoftware forforforfor HumanHumanHumanHuman RobotRobotRobotRobot InteractionInteractionInteractionInteraction
○Yosuke Matsusaka (AIST)

1. Introduction
Recently, there are increasing demands for the
robots which has an ability to communicate
with human.
OpenHRI[1] is an open source software
components for human robot interaction
developed as part of NEDO intelligent robot
technology software project. The components
wrap Julius speech recognizer[2] for Japanese,
English and German voice recognition and
OpenJTalk[3], Festival[4] and MARY[5] for
Japansese, English and German voice synthesis
respectively and also implements auditory
filters and extensible dialogue manager
components all available for free and open
source. Thanks to uniform interface defined in
RT-Component specification[6], the developer
can easily integrate these components into their
complete robotic systems.
In this abstract, the design and implementation
as well as the practical development techniques
of OpenHRI is introduced.
2. Architecture of OpenHRI
The components are classified into 5 groups.
Audio I/O components control audio I/O
hardwares and convert the data to/from
RT-Component data streams. Audio filter
components applies signal processing to
improve the clearness of the input signals.
Voice recognition and voice synthesis
components will convert from/to voice to/from
text. Dialog manager components will try to
understand each voice input and the other
informations to decide how to respond to the
user.
The system can be elastically reconfigured to
adapt to the environments or to the tasks by
cascading or replacing the components.
3. Development Techniques
3.1 Documentation
SPHINX[7] is used for generate documents
for OpenHRI components and systems. Half of
the documents are written by hand by the
developer. The other half of the documents are
automatically generated from the texts
embedded in the component itself by using the
"rtdoc" tool developed by ourselves[8].
Component diagrams used in examples
documentations are also automatically
generated by "rtstodot" tool combined with
GraphViz visualization tool[9].

3.2 Testing
Testing of the components configured in
typical system compositions are done
automatically by running the UNIX shell
scripts. One of the difficulty of testing HRI
systems are: we have to make an actual
pronunciation to test the voice recognizer and
listen to the actual voice to confirm correct
output of the voice synthesizer. For this
problem, we have enabled automated test by
reconstructing the components to form an
inverse system that recognize the voice
synthesized by the system itself. This technique
is especially useful when testing multilingual
system without hireing native speakers.
3.3 Building Installer and Package
Building of installer and package is the
another important step that should be
automated to enable fast iteration of
deployment and incorporation of user
feedbacks. We use launchpad[10] to automate
the creation of Linux binary packages and
NSIS script[11] to automate the creation of
Windows installer. Update of the user side
package has also been done automatically by
apt-get system for Linux platform and "rtsetup"
utility[12] developed by our selves for
Windows platform.
4. Summary
In this abstract, we have briefly introduced
practical techniques we have developed to
maintain our softwares and documents. We
hope these techniques are shared among the
community to realize effective development of
open source robotic softwares.
References:
[1] http://openhri.net/
[2] http://julius.sourceforge.jp/
[3] http://open-jtalk.sourceforge.net/
[4] http://www.cstr.ed.ac.uk/projects/festival/
[5] http://mary.dfki.de/
[6] http://openrtm.org/
[7] http://sphinx.pocoo.org/
[8] https://github.com/gbiggs/rtshell
[9] http://www.graphviz.org/
[10] https://launchpad.net/
[11] http://nsis.sourceforge.net/
[12] http://code.google.com/p/rtsetup/

RSJ2011AC2Q2-4

第29回日本ロボット学会学術講演会（2011年9月7日〜9日）


