

SIGVerse - A Simulation Platform for

Human-Robot Interaction

O Jeffrey Too Chuan TAN and Tetsunari INAMURA National Institute of Informatics, Japan

The 29th Annual Conference of The Robotics Society of Japan

Motivation

Classical Robot Simulation II Multi-Agent Simulation

Physical behaviors

Collective effects

The HRI Problem

SIGVerse The HRI Problem by Goodrich 1. General development and Schultz [10]: platform to model and simulate a wide range of robot design Level and behavior of 1. autonomy **Communication** between 2. agents and human-robot is Nature of information 2. a main focus exchange 3. Not just **multi-agent** but Structure of the team 3. multi-user is targeted to Adaptation, learning, and 4. simulate a whole social training of people and the interaction robot Support application based Shape of the task 5. customized human-agent interface Human-robot task planning and evaluation

1. Robot Design [1/3]

Physics and Dynamics **Behaviors**

- Fundamental Physics and Dynamics
- Collision Detection
- Object Grasping and Manipulation

Falling Behavior

1. Robot Design [2/3]

Perception with Physical Constrains

– Visual and Audio

1. Robot Design [3/3]

Robot Modeling

- Humanoid
- Mobile Robot

2. Communication [1/2]

Verbal and Non-Verbal Communication

Joint Attention

2. Communication [2/2]

Level of Perception Data

- High abstract level (viewpoint, objects' metadata)
- Raw data (raw visual data in pixel map, wave file)

3. Multi-Agent and Multi-User

4. Human-Agent Interface

- GUI Interface
- Haptic Devices
- Motion Capture System

Haptic Device

Task Analysis

5. Human-Robot Task

The performance of a personal robot can be studied from the **task-based analysis** of the human-robot interaction

Interaction Intelligence

- Audio and Visual Perception
- Behavioral Recognition and Prediction
- Robot Control
- Machine Learning

Update parameters by simulation attributes

SIGVerse Simulation

- Physical Simulation
- Perception Simulation
- Communication Simulation

Service Modeling

Service modeling quantifies tasks in service terms to determine the parameters for evaluations

Functional requirements – tasks have direct influence to the main goal (e.g. mobility)

Non-functional requirements – can be derived from human factors (e.g. noise level)

Application (1)

Human-Robot Collaboration Simulation

Application (2)

Multi-Agent Hunter-Target Simulation

Application (3)

Multi Human-Agent Collaboration Simulation

Application (Summary)

The HRI Problem	Human-Robot Collaboration Simulation	Multi-Agent Hunter- Target Simulation	Multi Human-Agent Collaboration Simulation
Autonomy	Modeling of humanoid robot and human avatar	Modeling of autonomous mobile agents	Modeling of autonomous and remote controlled mobile agents
Information Exchange	Verbal communication via text message and non- verbal communication via visual perception and gesture behaviors recognition.	Verbal communication via text message with perception physical constrains	Verbal communication via text message with perception physical constrains
Teams	Human-robot	Multi-agent	Multi-agent with multi-user participation
Adaptation, Learning and Training	Various interfaces: GUI, haptic device and motion capture system	GUI Interface	GUI Interface
Task-Shaping	Task planning in human- robot collaboration	Multi-agent collaboration	Human-agent collaboration with real time strategy

Conclusions

1. Robot Design

General development platform that offers physics simulation, realistic perception and robot modeling

2. Communication

Verbal and non-verbal communication with different level of perception data

3. Multi-Agent and Multi-User

 Social interaction that involves all multi-agent and multiuser

4. Human-Agent Interface

Highly customized interface to suit application's needs

5. Human-Robot Task

 Application on collaboration that improve task planning and evaluation

Future Work

- Social interaction between human and robot
 - Humanoid robot modeling: natural body gestures and facial expressions
 - Agent's intelligence development: expand text based communication to include emotion expression and behavior recognition
 - With learning methods and knowledge database development over a large group of users with the multi-agent and multi-user capability

Thank you

jeffrey@nii.ac.jp www.sigverse.org