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Abstract— A vision based object recognition subsystem on
knowledge-based humanoid robot system is presented. Hu-
manoid robot system for real world service application must in-
tegrate an object recognition subsystem and a motion planning
subsystem in both mobility and manipulation tasks. These re-
quirements involve the vision system capable of self-localization
for navigation tasks and object recognition for manipulation
tasks, while communicating with the motion planning subsys-
tem. In this paper, we describe a design and implementation
of knowledge based visual 3D object recognition system with
multi-cue integration using particle filter technique. The parti-
cle filter provides very robust object recognition performance
and knowledge based approach enables robot to perform both
object localization and self localization with movable/fixed
information. Since this object recognition subsystem share
knowledge with a motion planning subsystem, we are able to
generate vision-guided humanoid behaviors without considering
visual processing functions. Finally, in order to demonstrate the
generality of the system, we demonstrated several vision-based
humanoid behavior experiments in a daily life environment.

I. INTRODUCTION

Humanoid robots are expected to assist human activities in
daily life. Many researches have been involved in realizing
humanoid robots in a daily environment [1]–[3]. In order to
achieve these tasks in real world, sensory information is es-
sentially important. Thus the development of general-purpose
autonomous sensory based behavior generation system is a
very important and challenging research area.

In this paper, we introduce our knowledge based humanoid
system that integrates both motion planning system and
visual object recognition system. While motion planning
systems [4]–[6] only output a joint angle or joint torque
sequences of a robot. We are interested in systems which
generate motions with appropriate visual sensing(verification
or recognition) [7]–[9]. In order to achieve this, we employ
the knowledge based approach. Each object in the system
contains not only 3D geometric shape, but manipulation
knowledge for a motion planner and visual feature knowl-
edge for a vision based object recognition system.

Section II describes our knowledge based humanoid robot
system, then in section III and IV illustrate a knowledge
based motion planning system and a visual recognition
system respectively. In section V? we show vision based be-
havior examples of humanoid robot in daily life environment.

K. Okada, M. Kojima, S. Tokutsu, T. Maki, Y. Mori and M. Inaba are with
the Graduate School of Information Science and Technology, The University
of Tokyo, Engineering Building No. 2, 7-3-1, Hongo, Bunkyo-ku, Tokyo,
113-8656, Japan k-okada@jsk.t.u-tokyo.ac.jp

Fig. 1. Behavior example of knowledge based vision guided humanoid
system

II. KNOWLEDGE-BASED VISION-GUIDED HUMANOID

SYSTEM

Fig.1 shows the concept of knowledge-based vision-
guided humanoid system. The system relies on the humanoid
robot programming system capable of three dimensional
shape modeling [10]–[12]. The left bottom figure shows
graphical viewer interface of our humanoid robot system
in which all objects related to the robot task are modeled
with associated knowledge. In this example, we modeled a
kitchen, a bar counter, a cup and a plastic bottle which exists
in the real environment shown in the right bottom figure.
Top left image is robot’s view and a simulated view image
in model environment is super imposed to a real view image
as the top right image.

Motion planner generates sequence of robot posture using
these knowledge which are also used in object recognition
system in order to examine if the interest object exists in real
world and update its location in the model environment for
a motion planner. The key feature of our system is:

1) Motion planning subsystem and object recognition
subsystem share the same object representation which
enables simple system design.

2) Humanoid behavior programmer does not have to ex-
plicitly consider the object recognition program. Since
the framework of object recognition subsystem is so
general that is able to apply any kind of objects for
both manipulation and navigation.

Proceedings of the 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems
San Diego, CA, USA, Oct 29 - Nov 2, 2007

ThB2.1

1-4244-0912-8/07/$25.00 ©2007 IEEE. 3217

Authorized licensed use limited to: UNIVERSITY OF TOKYO. Downloaded on January 7, 2009 at 07:19 from IEEE Xplore.  Restrictions apply.



Fig. 2. An example of object and environment model with manipulation
knowledge in kitchen task environment
Three arrows on the floor show spot information. Right figures show 3D
shape model and handle information which is displayed as red triangles
and cylinders. A red sphere in the kettle figure shows manipulation
information.

III. KNOWLEDGE-BASED TOOL MANIPULATION MOTION

PLANNER [6]

This section briefly describes a tool manipulation motion
generation method. In contrast to the previous humanoid mo-
tion planner researchesthat focus on the planner algorithm of
a large search space, we focus on knowledge representation
and description for generating tool manipulation behavior.
Our method relies on a manipulation knowledge [13] which
is used to describe robot’s motion in a simple manner. In
this approach, a tool manipulation motion is described as
a key frame motion of a reference coordinates which we
call manipulate knowledge. Thus, the motion planner
generates a sequence of whole body postures from the key
frame motion of manipulate.

A. Object model with manipulation knowledge

Tool manipulation motion of a humanoid robot is modeled
as “a robot standing at certain position controls whole body
joint angles while holding a target object”.

From this viewpoint, we defined a knowledge for tool
manipulation motion generation as followings. A robot is
located on the spot coordinate to manipulate a tool,
grasp the tool object according to the handle coordinate
and constraints and manipulate a tool with reference to a
manipulate coordinate(See Fig.2 for detail).

B. Tool manipulation motion planner using the knowledge

Fig.3 shows the procedure of the tool manipulation plan-
ner. Upper figures shows the key frame motion of the
manipulate coordinate which is the input of this planner.
Lower figures show the whole body posture sequence, which
is the output of the planner. The tool manipulation planner
described in this section generates complex whole body
motions (sequence of 30 D.O.F. joint angles) from the simple
input data (sequence of 6 D.O.F. coordinates).

Fig.4 shows tool manipulation behavior of an actual life-
sized humanoid robot by using this method.

Input : the trajectory of manipulate

calculate the trajectory of handle

Output : the whole body posture sequence

Fig. 3. Procedure of the tool manipulation planner
This planner generates complex whole body motions (sequence of 30 D.O.F.
joint angles) from the simple input data (sequence of 6 D.O.F. coordinates).

Fig. 4. Tool manipulation behaviors of a humanoid
Both sweeping and vacuuming behavior are able to generate using object
models, tool manipulation knowledge and trajectories of a manipulation
coordinate.

C. Motion generation programming

A humanoid behavior is programmed as following pseudo
codes by the use of tool manipulation motion planner. The
manipulate function requires the target object and the
motion list with reference to the manipulate coordi-
nates as its key frame motion sequence. In the function,
it calculate the motion sequence of the object and calls a
:manipulate method of a robot body to generate whole
body motion. In the :manipulate method, it uses the
handle knowledge to determine the reaching position and
solves the whole body IK method to generate the whole body
posture.� �

(defun manipulate (obj motion-list)
(let (manip manip-list)
(setq manip (send obj :manipulate))
(dolist (motion motion-list)

(push (send manip :transform motion) manip-list))
(send *robot* :manipulate obj manip-list)))

� �
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IV. KNOWLEDGE BASED PROBABILISTIC VISUAL

OBJECT RECOGNITION

A. Object recognition with visual cue knowledge

In order to recognize objects, we defined visual cue
knowledge as followings.

• Shape information: 3D object shape information for
3D distance information based object recognition

• ColorHistogram information: Color histogram of
an object surface for color texture based recognition

• VisibleEdge information: visible(detectable) edges
on an object surface for 2D edge based recognition

We adopt the Particle Filter(PF) algorithm [14], [15],
which is widely used in vision based object tracking systems
because of its robust characteristics.

B. Particle filter algorithm for object recognition

Particle filtering algorithm can be described as followings:

1) Measure: Calculate the weight (probability) w
(i)
t for

particle x
(i)
t using the observation model.

2) Resample: Resample particles using their weight
(probability) to generate an un-weighted approxima-
tion of p(xt|zt) .

3) Update: Update particles to predict new state vector xt

by applying the process dynamics model

For the particle filter based recognition system, xt denotes
the state vector of the interest object (6 elements for a 3D po-
sition and roll-pitch-yaw rotation), and zt the measurement
vector (visual cues). The posterior distribution at the frame
t is p(xt|zt) which is represented by a set of N particles
(hypothesis) xt = (x(1)

t ...x
(N)
t ) and their associated weights

(probabilities) wt = (w(1)
t ...w

(N)
t ).

Since the probability of each particle is measured as
followings, calculating p(xt|zt) from the visual processing
results is the vital part of the recognition system.

wt = wt−1
p(zt|xt) p(xt|xt−1)

q(xt|Xt−1, Zt)
= wt−1 p(zt|xt)

C. Multi-cue integrated visual recognition

We assume that distributions of visual cues are condi-
tionally independent, the conditional density p(zk|xk) can
be written as the product of density function of each visual
cues [16]. In this paper, three visual cues are integrated: 3D
feature points, color histogram and 2D straight edge.

p(zt|xt) = ppoint(zt|xt) pcolor(zt|xt) pedge(zt|xt)

D. Multi-cue observation model

1) 3D Feature Point: 3D feature points are generated
through following two steps. First, the 2D feature points
are generated by using the KLT feature extraction method
[17], which the feature points are located by calculating
the minimum eigenvalue of each 2 by 2 gradient matrix.
Then, the correlation based stereo matching is applied to
calculate the disparity of the feature points. Then we obtain
the 3D distance of the points from the camera origin by

assuming that the internal and external camera parameters
are calibrated.

The likelihood is defined as

pshape(z|x) = exp[
( 1
|P |

∑
p∈P Dpoint(p, F visible

ref )2)

2 σ2
shape

]

where the F visible
ref is a set of visible faces from the robot’s

view point among the all faces of the object F all
ref , P is a

set of 3D feature points its distance from the nearest faces
in F visible

ref under threshold and |P | denotes the number of
P . Dpoint(p1, p2) denotes the squared 3D distance between
two points. σshape is a user defined weight value.

2) Color Histogram: We use the following likelihood for
the HSV color histogram.

pcolor(z|x) = exp[−B(hBx , hBref
)2

2 σ2
color

]

where hBx
denotes the color histogram at the interest area

and hBref
as the reference color histogram model.

The interest area is a rectangular region on the image
plane. The size of this region is calculated based on the
3D object model information for each particle. Since each
particle contains the position information of the 3D object
model, we obtain the projected object area on the camera
screen using the robot’s viewpoint location information. Then
the bounding box of this area becomes the interest area for
histogram calculation.

The similarity between two color distributions can be
measured using the Bhattacharyya coefficient [18]:

B(h1, h2) = [1 −
Nb∑
b=1

√
hb,1hb,2]1/2

where h1 and h2 are normalized histograms and B(h1, h2)
ranges from 0 to 1 with 0 means that the two histograms are
same. σshape is also a user defined weight as above.

3) 2D Straight Edge: 2D straight edge cue is used
especially for artificial objects with less texture and colors.
This type of object is often seen in the daily life environment
such as a table, a refrigerator, a door, a drawer and so on.

First we apply the Canny edge detection method to extract
reliable edges from a input image, then we extract straight
edges E2D(= e(1)...e(L)) as followings:

a Generate a edge between start and end points
b Calculate distance between the edge and the farest point
c Divide the edge at the point if the distance is under the

threshold

The 3D edges associated with the object model E3D
ref are

projected on the image plane to obtain the 2D reference edges
E2D

ref .
To measure the similarity between E2D and E2D

ref , We

first divide E2D
ref into edge segments e

(1)
ref ...e

(M)
ref with fixed

length. Then, for each edge segment e
(m)
ref , we find the nearest
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straight edge segment among E2D(= e(l)). For each edge
e(l) by evaluating the distance value as

value(e(m)
ref , e(l)) = d (2 − a)

where

d =
{

edge dist(e1, e2) edge dist(e1, e2) ≥ dthr

0 edge dist(e1, e2) < dthr

a =
{

angle(e1, e2) angle(e1, e2) ≥ athr

0 angle(e1, e2) < athr

edge dist(e1, e2) is the distance between the edge e1 and
the starting point of the edge e2 plus the distance between
the edge e1 and the end point of the edge e2. angle(e1, e2)
is the angle between two edge segment which is calculated
as angle = −→e1 ×−→e2 .

Then we find the nearest edge segment pair e
(m)
ref , e(min).

Let the |value| the number of non-zero value(e(m)
ref , e(min)),

the similarity of two edge segments Dedge(E1, E2) becomes

∑
value(e(m)

ref , e(min))
|value|

Finally, we obtain the likelihood for the 2D straight edge
cue as below.

pedge(z|x) = exp[
(Dedge(E2D, E2D

ref ))2

2 σ2
edge

]

E. Vision guided behavior motion generation without con-
sidering visual processing

In order to evaluate a confidence of an object recog-
nition results, we use diagonal of covariance matrix of
the posterior distribution (diag(var[xt])) and height weight
value(w(imax)

t ).
Finally we update the manipulate function to

manipulate-with-vision function.� �
(defun manipulate-with-vision (obj motion-list)
(let (manip manip-list)
(setq manip (send obj :manipulate))
(setq feat (send obj :visualfeatures))
(unless (visual-reocognition feat)
(return-from manipulate-with-vision))

(dolist (motion motion-list)
(push (send manip :transform motion) manip-list))

(send *robot* :manipulate obj manip-list)))

� �
The visual-recognition function apply particle fil-

ter based object recognition method using feat(visual cue
knowledge) information, evaluate a result using its confi-
dence and update object position in a model if it has enough
confidence.

Note that the function manipulate-with-vision
takes same information as the manipulate function. It
does not require any visual processing related arguments
which is embedded in the knowledge. Therefore, the pro-
grammer does not have to consider the visual processing to
generate vision-guided behavior of a robot.

Cup detection result using 3D feature points
(left : success, right : fail)

Object recognition with multi-cue integration

(top left : 3D feature points, top right : color histogram similarity )

Blue and red lines show likelihood of each particle. Blue lines indicate

color histogram similarity and red is 3D features point based similarity.

Fig. 5. Visual object recognition with multiple visual cues

F. Visual object recognition implementation and experiments

1) Experimental setup: We use a humanoid robot
HRP2JSK equipped with calibrated stereo camera system
[12]. We assume that joint angle sensors of the robot are
reliable, the robot is rigid enough and robot kinematics
parameters are known, thus the head position of the robot
can be calculated. However, the relative coordinate from the
head position to the stereo camera origin is unknown, then
we also calibrated hand-eye coordinates.

In the right top image of the Fig.1, the robot posture in the
model is update thorough the joint sensor information and
the shape of the arm of the robot and the shape of the target
in the model environment is superimposed in the real view
image. This image shows that the stereo camera parameter
and hand-eye coordinates are calibrated.

2) Object recognition experiments: Fig.5 shows the re-
sult of object recognition with multi visual cue. In this
example, we assume the position of the object lies on the
2D plane, thus the state vector becomes two dimensional
vector as x

(i)
t = (x, y)t and we modeled a cup as a cylinder

shape. The top figures show that there are ambiguities
between plastic bottles and a cup when only 3D features
points are considered, then we introduce color histogram
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Fig. 6. A self localization example of the multi cue 3D object recognition
system: Left: Edge image, The canny edge detector results and extracted
straight edge segments(red lines). Right: Result image, Green super imposed
sink shape is the result. Black and red lines indicate particles. Since the robot
knows the kitchen object is fixed to the environment, thus a relative position
of the robot from the kitchen is calculated.

based similarity. In the top right image of middle figures,
the whiter pixel has higher similarity between input color
image and color histogram model associated with the cup
model. The bottom figures show results. Blue and red lines
show likelihood of each particle. Blue lines indicate color
histogram similarity and red lines indicate 3D features point
based similarity. The left figure shows initial configuration
and right the right figure shows the result after several
iteration.

3) Self localization experiments: Fig.6 is a self local-
ization example. In this example, only edge information is
used. In the left image, white edges are results of the canny
edge detector and red straight lines are extracted straight
edge segments. In the right image, green super imposed sink
shape is the result. Black and red lines indicate particles.
Since the robot knows that the kitchen object is fixed to the
environment, then a relative position of the robot from the
kitchen is calculated.

V. VISION-BASED HUMANOID BEHAVIOR EXPERIMENTS

A. Demo scenario

From Fig.7 to Fig.9 show the vision based humanoid
behavior experiments. The scenario is as followings.

1) Grasp the cup and the plastic bottle
2) Pour the tea from the plastic bottle into the cup
3) Place the cup and the plastic bottle
4) Grasp the cup and move to the sink
5) Open the water outlet and wash the cup

To achieve this task, the robot has to recognize the cup,
the plastic bottle, the sink and water flow. In Fig.7 and Fig.8,
the robot detect the position of the cup and the bottle to grasp
them. In the Fig.8, blue colored lines on the counter in lower
figures represent the particle and its weight. In the lower left
figure, there are no tall line, that means no particle has high
confidence. On the other hand, in the lower right figure, the
particles around the cup position have high confidence.

In the Fig.9, the robot detect current position using the
method described in Fig.6, then the robot detect the position
of the water flow to wash the cup. The water flow is modeled
as a cylinder and 3D feature points are use to calculate the
similarity.

Fig. 7. Humanoid behavior examples in daily life environment based on
visual object recognition: The robot recognize the cup and the plastic bottle
to grasp and pour the tea.

Fig. 8. The robot recognizes the cup on the counter. The blue colored
lines on the counter in lower figures represent the particle and its weight.
In the lower left figure, there are no tall line, that means no particle has
high confidence. On the other hand, in the lower right figure, the particles
around the cup position have high confidence.

B. Knowledge data base for the experiments

In order to archive this experiment, we modeled 5 objects
in demo environment. For an object manipulation, we mod-
eled a cup and a plastic bottle with manipulation knowledge
and visual cue knowledge which are a 3D shape and a
color histogram(Fig.5). Water flow is also modeled using
3D shape knowledge(Fig.9). For a navigation task, a bar
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Fig. 9. The humanoid robot detect the position of the water flow to wash
the cup. The water flow is modeled as a cylinder and 3D feature points are
use to calculate the similarity.

counter and a kitchen sink are described with visible edge
knowledge(Fig.6).

Currently, these visual knowledge are modeled manually.
A 3D shape and a visual edge features are strong enough to
be used as an absolute reference. We use HSV color space
for histogram based recognition, since HSV is robust to the
illumination changes. However throughout the experiments,
we have to change the histogram set when the color of the
table changes or spot lights are added.

VI. CONCLUSION

This paper presents an object recognition subsystem of
our knowledge-based vision-guided humanoid robot system.
The humanoid behavior experiment is a part of final demo
of “The Real-world Information System Project” which was
performed several times in front the domestic and inter-
national medias without failure. This demo indicates the
robustness of our system.

The key feature of our vision system is:

1) Very robust visual object recognition system based on
multi-cue integration and particle filter based stochastic
approach.

2) The developed system is able to utilized for both
navigation tasks and manipulation tasks by using mov-
able/fixed knowledge of the object.

3) The object recognition subsystem and the motion plan-
ning subsystem are tightly connected and integrated by
sharing the same object and environment knowledge.
This feature makes possible to automatically generate
visual-guided behaviors.

The key challenge in humanoid robotics research is inte-
gration of various kinds of systems. Thus the design concept
or developmental methodology of integrated system is one
of the important issues. In this paper, we presented knowl-
edge centered integration of vision and motion subsystems.
This approach enables subsystem to perform effectively by
communicating each other through shared knowledge.

Limitations of the system are: 1) Currently we manu-
ally modeled knowledges, development of manipulation and

visual knowledge acquisition behavior is required. 2) The
system does not recognize other robots or humans. Human
or robot activities recognition and integration with object
recognition system are required.
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