374 Intelligent Autonomous Systems 10
W. Burgard et al. (Eds.)

1OS Press, 2008

© 2008 The authors and 10S Press. All rights reserved.

doi:10.3233/978-1-58603-887-8-374

Design and Implementation of Humanoid
- Programming System Powered by
Deformable Objects Simulation

Ryohei Ueda, Takashi Ogura, Kei Okada and Masayuki Inaba "

ueda@jsk.t.u-tokyo.ac.jp
P Graduate School of Information Science and Technology, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Abstract. This paper describes the design and implementation of a hu-
manoid robot system that is capable of simulating deformable objects
such as a cloth or a towel. Two key issues of the program system de-
sign are discussed: 1) adding dynamics to selected objects at the se-
lected time. 2) the simple API for mesh creation of deformable objects.
This system helps users to develop deformable object manipulation and
recognition. Finally, a cloth recognition and motion generation carrying
a mat using the developed system is presented.

Keywords. Humanoids, Deformable Objects Simulation, Robot Simulator,
Recognition of Cloth

1. Introduction

Humanoid robots are expected to assist human activities in daily life. There-
fore humanoid robots need to deal with various kinds of objects. Especially, it is
important for humanoid robots to be able to deal with deformable objects like
cloth.

In order to simulate flexible objects in a humanoid robot simulator, the func-
tion of deformable objects simulation is needed. However the existing humanoid
robot simulators, such as OpenHRP|1], FAST[2], Robotics Studio[3], do not in-
corporate soft body simulation. The existing humanoid robot simulation systems
need to consider how to embed deformable objects simulation into them.

When humanoid robots recognize deformable objects such as a cloth, it is
difficult to recognize deformable ob jects with visual processing using the only real
robot’s view images because of its deformation and occlusion. It may be efficient
to apply flexible models for recognition of deformable objects. Kita et al. shows
the effectiveness of a deformable model for estimating the states of clothing[4].
Felzenszwalb adopted deformable template models to detect deformable shapes[5].

In grasping field, Howard et al. used 3D physically-based model for grasping
soft body objects by two cooperative manipulators|6].

R. Ueda et al. / Design and Implementation of Humanoid Programming System 375

In this paper, the design and implementation of a deformable objects simu-
lation embedded into the existing humanoid robots programming environment.
The simulator is applied to a humanoid robot for recognition and handling of
deformable objects.

2. Humanoid Robot Simulator Embedded into a Robot Brain

The robot simulator presented in this paper is embedded into a robot brain and
applied for recognition and motion generation.

A robot simulation should enable the user to realize an efficient software
development. A virtual robot model is used to test new algorithms before using
them for experiments on the real robot. The following requirements have to be
fulfilled:

I The robot models in the simulator can be controlled with the same inter-
face as the real robot.
II The sensors of the robot can be emulated in the simulator.

Robot simulators are also expected to be embedded into a robot brain. They
are used to predict a situation or to plan a specific task. In order to meet these
requirements, a robot simulator additionally needs to have the following functions:

1. Addition of an object to the virtual world at any time.
2. Adding or removing dynamics to an object at any time.

1. is required when a robot finds a new object. The object is added to the
virtual world of the robot brain.

2. is needed to reduce the computational load. When a robot execute a task
in a complex environment, such as a room, the robot needs to deal with many
objects. However, if the dynamics of every object are simulated the computational
load will be enormous. It is therefore important to compute only the dynamics of
the task objects the robot deals with.

Ogura et al. developed EusDyna[7], which meets the requirements described
above. In this paper the incorporation of a deformable objects simulation into
EusDyna is discussed.

Fig.1 illustrates the system configuration of EusDyna. EusDyna is imple-
mented in EusLisp|[8], which is a robot system description language. EusLisp is a
Lisp implementation capable of dealing with three dimensional shapes and mul-
tithreading.

The humanoid robots in EusDyna have the same interface to the real robots
and the software resources developed in EusLisp can be used in EusDyna. Thus
it is easy to embed a simulation engine into a robot brain.

EusLisp is capable to deal with three dimensional shapes. The robot and
environment models are represented by non-dynamic three dimensional objects.
EusDyna adds dynamics to these objects using an external simulation engine.
EusDyna is also capable of switching the external simulation engine between
ODE[9],PhysX[10],and Math Engine of Vortex.

376 R. Ueda et al. / Design and Implementation of Humanoid Programming System

— EusLisp N
~ EusDyna

Action Program

—— Lisp Thread ——

sk Programs

1 " e
Planner/Fecogrition/Control Madules [P Pl — update model

[1

Simulated Robot

nces

Lisp Objects Update Modula

Sensor Emulate Module

PhysX APl ——

Rigid Body Cloth
Soft Body

Real Robot

Figure 1. Configuration of Humanoid Robot Programming System and EusDyna

3. Implementation of a Simulation Environment Incorporating Deformable
Objects

3.1. Mass-Spring System Model of Deformable Objects in PhysX

It is effective to use the simulator for action generation. An application example
is when the robot recognizes objects of the real world and this information is
sent to the simulation where a virtual robot performs actions on the objects and
learns how to handle them. This virtual learning process allows the robot brain
to acquire a knowledge of its environment and can be used by the real robot
encounting these same objects in the real world. If this learning process shall be
performed online the simulation speed is important.

We use the game dynamics engine “PhysX”, because PhysX is capable to
simulate the behavior of rigid bodies in a fast time by PPU (Physics Processing
Unit) and is equipped with a deformable objects simulation that can treat with
2-D flexible objects (Cloth model), 3-D flexible objects (Soft body model) and
liquids (Fluids model). In this paper, soft body model and cloth model are focused
on.

In PhysX, the modeling method of Position Based Dynamics[11] is used for
the deformable objects model.

Fig.2 shows the components of the Soft Body and Cloth model of PhysX.
A tetrahedra element is used for the Soft body model. A tetrahedron mesh is
used to represent the different shapes of 3-D deformable object. The Cloth model
component is a triangle.

3.2. Adding Dynamics at a Selected Time
EusDyna is capable of adding dynamics to a selected object at any time as de-

scribed above. This means that the dynamic calculation of every object has to be
started first.

R. Ueda et al. / Design and Implementation of Humanoid Programming System 377

stretching constraint

N stretching constraint /Q
I\

N A
volume consiraint 2 bending constraint

«»

1 /
\ /

Figure 2. Tetrahedra : Component of Soft Body and Triangle : Component of Cloth

In the case of a deformable object its deformation is only computed when
it is made to be simulation target beforehand. Otherwise, it corresponds to a
rigid body and it conserves its initial shape. Fig.3 shows a cloth model before
and after applying the dynamic calculation. By treating deformable objects in
this way the software development efficiency increases because the position and
orientation of the deformable objects can be defined before the dynamics calcu-
lation is started. There is another advantage in embedding into a robot brain.
When a robot recognizes deformable objects, it is difficult to determine whether
rigid or soft a motionless deformable object is. It is not until a robot can find
deformation that a deformable object is distorted. Therefore it may be efficient
to recognize a motionless flexible object as a rigid body first and recognize it as
a deformable object when it is deformed. In this recognition way, treatment of
deformable objects in EusDyna described above is functional.

Figure 3. Left : Before Adding DynamicsRight : After Adding Dynamics

3.2.1. API for Mesh Creation of Deformable Objects

When using a deformable object model the mesh creation is a difficult problem.
Furthermore, the mesh of a soft body is one of the major elements which deter-
mines its behavior. Taking into account the facility of programming and being
embedded into a robot brain a simple API for mesh creation is required. Fig.4
shows the constitution of a deformable cube which is a primitive shape of de-
formable objects of the APT of EusDyna. The shape of a soft cube is defined by
the edge length in x, y and z axis and the mesh resolution in x, y, and z axis. The
cube is a three dimensional deformable object and consists of a tetrahedron mesh.
It is assembled of vowels and each of the vowels is composed of five tetrahedron.
Fig.5 shows the images of a deformable cube simulation using this system. Fig.6
is the source code of Fig.5 simulation.

378 R. Ueda et al. / Design and Implementation of Humanoid Programming System

“ AN
: £

Figure 4. Constitution of Soft Body Cube 2

[

Figure 5. A Deformable Cube in EusDyna

(L. (d-init) j;initialize dynamics ﬁ
2. (setq *sc* (instance soft-body
3. :dinit :cube (list 200 200 200 10 10 10)))
4. jicreate soft-body cube
-

(setf (get *sc* :face-color) :gray)

6. (send *sc* :locate #£(0 0 300))

7. (d-make *sc*) ;;add dynamics to *sc*
8. (send *sc* :draw-tetra)

9. i;select the mode of drawing

10. (objects (list *sc*)) :;draw *sc*

11. (d-start) j;start simulation

___ Y,

Figure 6. The Source Code of Fig.5

4. Experiments
4.1. Recognition of Deformable Objects

4.1.1. Estimating the state of a cloth

In this section a cloth recognition method using this system is presented. The
problem situation is the following:

L. Determining where a cloth is picked up.
2. The robot is given only two images(Fig.7).
3. The environment information such as the height of the desk is known.

In order to solve this problem the EusDyna system is used. The method is de-
scribed below.

0

Figure 7. Picking Up a Cloth
Figure 8. the Grid of a Cloth model

First, the cloth model is created. The parameters of the cloth shape are
obtained by the left of Fig.7, and the height of the desk.

Second, the simulated cloth model is picked up. The candidates of the picking-
up point are 6 x 6 grid points of the cloth model(Fig.8). Each of the cloth grid

R. Ueda et al. / Design and Implementation of Humanoid Programming System 379

Figure 9. The Simulated Cloth Images

points are moved in the simulator towards the position of the hand, which is
obtained by stereo vision.

Third, the simulated cloth model is compared with the cloth in the real world.
The image of the cloth in the real world, the right of Fig.7, is obtained from the
view of the real robot. The images of the cloth model in the virtual world are cre-
ated from the robot model view placed in the virtual environment.The similarities
between the simulated view images and the real view image are calculated.

The similarity is calculated using the cloth contour. The definition of the
similarity is eq.(1).

And(SimulatedImge,Reallmage) +
Pixel Num

And(Not(SimulatedImage),Not(Reallmage)) (1)
Pizel Num

Similarity =

As a result, the most similar image of the simulated cloth is the second one of
Fig.9. The image is picked up at (5,0) in the grid coordinates of Fig.8.
4.1.2. Replaying the Cloth Folding Motion

In the next experiment, we control a cloth model in the simulator according to
the behavior of the cloth in the real environment (Fig.10).

Figure 10. The Real and Simulated Images of Cloth Folding

In this experiment, the cloth model is created from the robot’s view of a cloth
before being folded. When the cloth is folded, the cloth model in the simulator
is moved according to the position of the hands(Fig.11), which is obtained using
stereo view of the real robot. When a robot recognizes the flexible object which
deforms largely, it is difficult to recognize it based on the visual processing us-
ing the only real robot’s view image. This experiment shows the effectiveness of
recognition using a deformable objects simulation.

380 R. Ueda et al. / Design and Implementation of Humanoid Programming System

Figure 11. The Path of the Man’s Hands

In addition, the action for a playback of the motion may be planned using
this system.

4.2. Motion Generation of Carrying a Mat

In the next experiment, we present the method to acquire a stable motion for
carrying a mat using the system developed. In full search, the trial programs are
executed after the initial condition is defined based on each of the parameters.

The motion parameters are the distance of the robot’s hands in x and y
direction from the center of gravity of a mat(Fig.12). ArmDistance is changed in
10 steps and each of T De formabelObjects and YDe formabelObjects 15 varied in 3 steps.

The value function is eq.(3). The less the value of F' is, the more stable the
motion is. In addition, the threshold in order to detect whether the mat is fallen
down(Fig.13).

nl veV
dF = Z ~ Phumanoid — Do (2)
veV

F— Z dEdt g (3)

for all simulation step

Where V' are the vertices of the deformable objects, Phumanoid is the position
of the robot and Dy is the initial distance between the robot and the mat.

As a result, the most stable motion is shown in the left images of Fig.14. The
right images of Fig.14 are one of the unsuccessful motions which is valued less.

5. Conclusion

In this paper, a system configuration consisting of a deformable ob jects simulation
was presented. The simulation is embedded in a humanoid robot programming
environment. The applicability of the method was shown at the examples of cloth
recognition and mat carrying motion generation.

The key feature of the system is:

1. Adding dynamics to the selected objects at any time

R. Ueda et al. / Design and Implementation of Humanoid Programming System 381

Initialize Simulation Environment

" Go o the Next Simulation Step
unti the End of Simulation

S L
Galculate dF (eq.(2)) ‘ F & F +dFdtin (w.(axj

— e ,.T,i,,

yes

ArmDistance

<< dF <thra

JNU

"~ Finish Simulation
(the Mat Fallen Down)

Figure 12. Simulation Parameters

Figure 13. The Flow Chart of a Trial in
Simulation

Figure 14. The Temporal Images of Carrying a Mat. A-1 and A-2 are the Most Stable Motion.
B-1 and B-2 are One of the Unsuccessful Motion.

2. Simple API for mesh creation of deformable objects

For future research, it is planned to use this system for teaching motions such
as cloth folding.

References

[1] Fumio Kanehiro, Kiyoshi Fujiwara, Shuuji Kajita, Kazuhito Yokoi, Kenji Kaneko, Hirohisa
Hirukawa, Yoshihiko Nakamura, and Katsu Yamane. Open architecture humanoid robotics
platform. In ICRA, pages 24-30. IEEE, 2002.

[2] Kei Okada, Yasuyuki Kino, Fumio Kanehiro, Yasuo Kuniyoshi, Masayuki Inaba, and
Hirochika Inoue. Rapid development system for humanoid vision-based behaviors with
real-virtual common interface. In Proceedings of the 2002 IEEE/RSJ Intl. Conference on
Intelligent Robots and Systems (IROS’02), pages 2515-2520, 9 2002.

[3] Microsoft. Robotics Studio. http://www.microsoft.com/.

[4] Y. Kita and N. Kita. A model-driven method of estimating the state of clothes for
manipulating it. pages 63-69, 2002.

[5] P.F. Felzenszwalb. Representation and detection of deformable shapes. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 27(2):208-220, Feb. 2005.

[6] A.M. Howard and G.A. Bekey. Recursive learning for deformable object manipulation.
Advanced Robotics, 1997. ICAR '97. Proceedings., 8th International Conference on, pages
939-944, 7-9 Jul 1997.

[7] T. Ogura, K. Okada, and M. Inaba. Realization of Dynamics Simulator Embedded
Robot Brai for Humanoid Robots. In IEEE International Conference on Robotics and
Automation (ICRA2007), pages 2175-2180, 2007. .

[8] Toshihiro Matsui and Masayuki Inaba. Euslisp: An object-based implementation of lisp.
Journal of Information Processing, 13(3):327-338, 1990.

[9] Open Dynamics Engine ODE. http://ode.org/.

[10] AGEIA. PhysX. http://www.ageia.com/.
[11] M. Miiller, B. Heidelberger, M. Hennix, and J. Ratcliff. Position based dynamics. J. Vis.
Comun. Image Represent., 18(2):109-118, 2007.

